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EXCESS THERMODYNAMIC PROPERTIES
OF TERNARY FLUID MIXTURES
FROM MOLECULAR DYNAMICS

SIMULATION AND VAN DER WAALS
ONE-FLUID THEORY

K. SHUKLA*

Department of Chemical Engineering, Prairie View A&M University,
P.O. Box 0397 Prairie View, Texas 77446 U.S.A.

( Received 1 May 1996 )

In this paper, we report isothermal-isobaric molecular dynamics simulation results for
total and excess thermodynamic propertics of three selected nonideal ternary fluid
mixtures, in which particles interact via a Lennard-Jones pair potential. In these mix-
tures, size parameters of the components are kept to be the same, but energy parameters
of the components differ significantly. Simulation results are reported for mixture den-
sity, internal energy, excess Gibbs free energy, excess volume and excess enthalpy of
equimolar ternary mixtures as a function of temperature and pressure. The excess Gibbs
free energy is obtained directly using the coupling parameter charging approach, which
avoids the cancellation or magnification of errors in the simulation. These simulation
results are used to check the accuracy of a form of the van der Waals one-fluid theory,
which uses an accurate equation of state for the pure fluids. Van der Waals one-fluid
theory is successful in predicting total and excess properties of these nonideal mixtures
within simulation uncertainties.

Keywords: Computer simulation; excess thermodynamic properties; ternary fluid mix-
tures; van der Waals one-fluid theory

1. INTRODUCTION

Thermodynamic properties of multicomponent mixtures are import-
ant to the design and efficient operation of many industrial processes,

*Also, Department of Chemical Engineering, Rice University, Houston, Texas 77251,
U.S.A.
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such as enhanced oil recovery, supercritical extraction, biotechnology,
coal-rich gas processing and coal-based feedstock chemical processing.
Excess thermodynamic properties play key roles in the understanding
of how intermolecular forces cause nonidealities in fluid mixtures, and
they are also important to determine phase equilibria in fluid mixtures.
In fluid mixtures consisting of spherical molecules, nonideal solution
behavior is attributed solely to differences in the molecular size and
energy parameters appearing in the potential functions. Such mixtures
are usually modeled using the Lennard-Jones (LJ) potential function
because the LJ fluid gives a reasonable respresentation of simple fluids
and is the best studied potential from simulation and theory. This
potential is used as the reference system in perturbation theories of
molecular fluid mixtures [1-4]. Therefore, accurate computer simula-
tion results for excess properties and phase equilibria of nonideal LJ
mixtures are required to test the accuracy of statistical theories. So far,
simulation studies have been devoted to evaluate excess properties and
phase equilibria of binary mixtures only [5-19]. Only recently, Gibbs
ensemble Monte Carlo simulation resuits for vapor/liquid phase equi-
libria in ternary mixtures have been reported [20, 21]. Simulation re-
sults for the excess thermodynamic properties have not been published
in the literature. Excess thermodynamic properties play important role
in judging theories because they are very sensitive to the strength of
unlike molecular interactions. Therefore, accurate simulation results for
the excess thermodynamic properties are also needed to examine the
accuracies of statistical theories [22].

The excess property M* at a given temperature, T, and pressure, P,
is defined as

ME:M_ZXaMpnlre,1 (1)

where M is a generic extensive thermodynamic property of the mix-
ture, and M, is the corresponding property of the pure component
a, both at the same (T, P). X, is the mole fraction of component 4.
If the excess properties are obtained from eqn. (1), there may be a
cancellation of error or a magnification of error because properties of
the mixture and the pure components in simulations are determined
independent of each other. Moreover, excess Gibbs free energy is
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difficult to obtain from simulations. Several methods have been pro-
posed in the past to obtain free energy from simulations [23-25]. One
of the most reliable routes to the free energy is based on the coupling
parameter charging approach [26, 27]. A version of the coupling para-
meter method was used extensively in Monte Carlo simulation studies
of moderately nonideal mixtures [28-31], essentially at zero pressure.
However, that version of the method required values for the free
energies of the pure components. Later, the coupling parameter
method was revised so as to eliminate the need of the pure component
free energies [32]. Subsequently, the revised method was tested using
molecular dynamics simulations of several binary nonideal mixtures
over a range of temperature, pressure and composition [5, 6, 10]. This
method has been found to be highly accurate in obtaining excess free
energy of even strongly nonideal mixtures and can be applied to
mixtures in which particles may differ in any number of potential
parameters [9]. Once the free energy is known, excess volume and
excess enthalpy can also be evaluated using the coupling parameter
method, without the need of pure component properties.

Purpose of the present investigation is to report isothermal-isobaric
molecular dynamics simulation results on the total and excess pro-
perties of ternary fluid mixtures. In these mixtures, size parameters of
components are the same but energy parameters differ significantly.
We present simulation results for three excess properties: excess Gibbs
free energy (G¥), excess enthalpy (H*) and excess volume (V) along
with total density (p) and residual internal energy (U™) of mixtures as
a function of temperature and pressure. In these simulations, G* is
obtained using the accurate coupling parameter method. These studies
would be complementary to experimental and theoretical work be-
cause simulations provide the isobaric excess properties. We also
examine how accurately the van der Waals one-fluid theory can pre-
dict our simulation results.

The paper is organized as follows. The coupling parameter for a
ternary mixture is presented in Section 2. Section 3 summarizes the
molecular dynamics simulation method. In Section 4, we present van
der Waals one-fluid theory based on an accurate equation of state for
the pure LJ fluids. In Section 5, we present simulation results and also
test the accuracy of the van der Waals one-fluid theory. Finally, con-
clusion of the paper is presented in Section 6.
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2. DETERMINATION OF EXCESS PROPERTIES

Here, we consider a ternary simple fluid mixture of species
a(= A, B, C) and B(= A, B, C). In this mixture, the total potential en-
ergy of interaction (U) is given by the pairwise additive Lennard-Jones
(LJ) potentials (U ),

U =ZZ Ugp (2)
a f
with
Ua[l =(2— 5a/:) 2451/3 [(aaﬂ/rij)lz - (Ja/f/ri_i)()] 3)

i<j
More specifically, for the ternary mixture U can be written as
U=sU,,+Upg+ Upe+ U g+ U o+ Upge 4)

In eqn. (3) o,, and ¢, are size and energy parameters in the pair
potential, respectively, r is the intermolecular separation distance, and
d,4 1s the Dirac delta function. Unlike size parameters (0 45, 0 40, Opc)
and energy parameters (£ ,p, £ £5c) are given by the following com-
bination rules (CR),

Oup = Nup( Oy + 0/35)/2 (5)

Eap = Capn/ Ean £yl

(6)

where, n,, and {,, are unlike size and energy interaction parameters,
respectively. For 7,, = 1, eqn. (5) is called Lorentz CR. For {,, =1, eqn.
(6) is called Berthelot CR. For both 5,,=1 and {,;= 1, eqns. (5) and (6)
are called Lorentz-Berthelot (LB) CR. In these simulations, ¢ ;5 = 6, = 6,
and s, ,/k=120K, a,, = 3405 A.

In general, the excess Gibbs free energy is defined as [5, 6, 32]

GE=G T,P)—G(T,P) (7

mixture (
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where, G, is the free energy of an ideal solution

Gy=2 X,G,ue(\T.P)+ Nk, TY X, InX, (8)

purc,x(

and G, is the free energy of pure «, and kj is the Boltzmann’s
constant.
For a ternary mixture, an alternative expression to eqn. (7) can be

given as [5, 32]

GE —_ XA(Grcs — G

mixture purcA

) + XB(GR:S _ Gl‘cs

mixture pureB

) + X(‘( GTCS . GTC&

mixture puru(‘)

)

where G is the residual free energy of the mixture as the difference
between the free energy of the mixture and that of the ideal gas at the
same Tand P.

Using statistical thermodynamics [33] and the multiple-parameter
charging method [9], the excess Gibbs free energy of the n-component
mixture (eqn. {9)) in which particles differ in k parameters {4;} is given by

n k Am
GE=Y % XJ AU 0h)ypys,,, > 2, (10)
g

a=1li=1

This expression suggests that all {4} parameters can be charged sepa-
rately. However, since G is a state function one can choose to charge
all parameters for species « simultaneously. The final value of GE must
be independent of the way in which charging is performed. Hence,
eqn. (10) can be written in terms of an arbitrarily chosen parameter 4,

n k A
G'=3 X Xzf QU2 )nprsy, HdAi/d i) dAy (11

a=1i=1 Ay

Since during one simulation all {4;} are fixed, all the slopes (d4,/d4,)
are constant. Therefore, eqn. (11) can be written as

G'=Y X, J " QU [02,)ypy i (12)
a=1 )‘z
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Thus, one has to evaluate only one integral for each component re-
gardless of the number of parameters. In above equations, angle
brackets represent time or ensemble averages at constant (N, P, T). In
the 3-component mixture, eqn. (12) can be rewritten explicitly as

A.mu

'2'"',4 M 2 2
GF = XAJ‘ QU[0A )yprrd iy + XBJ (OU )82y xpr d A,y

1 1

A"'C
+X(~J QU [0A3)ypy >dAs (13)

1

Each term in eqn. (13) represents a charging process that starts
from one of the pure components. In this process, all the potential
parameters are charged simultaneously to their values 4, in the
mixture of interest. Here, energy ratios corresponding to three com-
ponents are the only parameters, while size ratios are the same.
Each charging process in eqn. (13) involves simultaneously charg-
ing two parameters. For example, in order to evaluate the first term
in eqn. (13), we start from pure A(e,, = &g; = &¢¢) and charge ¢,
and ¢, to their values. The ratio A, =egp/e,, is chosen to be the
independent coupling parameter, and ¢..'¢,, is charged simulta-
neously with 1, along the straight line, 1, =m, (ecc/e,4,4) +b,. For
this choice of the parameter, the integrand in the first part of the
eqn. (13) is given by

OU/04)) wpregs=Uppd/ A1 + U 4> /241 + (U 42 /2(4, — by)
+Upe> (24 = b )24 (A, — b))+ (U /(4 —by) (14)
The integrand in the second part of the eqn. (13) is evaluated by
setting 4, =¢&../¢zp and charging along the path A, =m, (¢,,/e55) +
b,, and is given by
<(6U/a/12)>)vp'1',;,m = < Ucc>/iz + < U3c>/2)vz + <UB,4 >/2(/12 - bz)
+ U2 (243 = b3)/22,(A, = by) + U 10/ (4, — by) (15)
Similarly, the integrand in the third part of eqn. (13) is obtained by

setting A3 =¢,,/6cc and charging along the path A;=m,
(egp/tcc) +bs, and is given by
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<((7U/(7/13)>N,,,-m‘ = Upp /23 + U (50 /243 + U 400/ 2(A3 — by)
+ <UB('>(2)‘3 - hs)/Z)“3(’]”3 —by)+ Upe> /4 —bs) (16)

Along the chosen straight line path, the potential parameters {4;} are
related by (k — 1) parameter equation of the form

b= (A — 2y /(] — i) (17)

where, fand i represent the final and initial values of the parameters,
respectively. In order to obtain the reliable value of G¥, several simula-
tions are performed, each at a different 4 value. The integrands are
evaluated from each simulation and the integrals are then computed
numerically.

3. MOLECULAR DYNAMICS SIMULATION

We follow the same isothermal-isobaric molecular dynamics simula-
tion method as described for binary mixtures before [5, 6]. Here, we
describe briefly the important parameters used in the simulation.
Simulations of the integrands, density, pressure and internal energy
are performed on ternary mixtures of 300 LJ particles. The pressure
in the simulation is controlled using Andersen’s method [34]. The
temperature is controlled by a momentum scaling method [35]. The
NPT equations of motion are solved using a fifth-order predictor
corrector algorithm [36]. Each run starts from an FCC lattice struc-
ture with initial velocities randomly assigned from a uniform
distribution and species labels randomly assigned to particles. The
particles are contained in a cubic volume. Periodic boundary condi-
tions and the minimum image criterion are applied [37]. The initial
value of volume is determined from van der Waals one-fluid theory,
which is described below. In all simulations, component A4 is com-
posed of the smaller atom. Parameters used in these simulations are
given in Table I. The simulation run consists of three phases: (1)
equilibrium phase, in which the lattice structure is destroyed and the
system relaxed towards equilibrium (2) stabilization phase, in which
running average contributions to the pressure are allowed to reach
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TABLET Values of parameters used in the NPT molecular dynamics

simulations

Number of atoms . 360
Integration time step, o, NETW 0.003
Volume inertial parameter, o/’ 10°°
Potential cut-off radius, -, 2.5

Start configuration FCC lattice
Duration of equilibration phase, time steps 2000-2500
Duration of stabilization phase, time steps 4000
Duration of equilibrium phase, time steps 10000- 15000

'm = mass of an argon atom

nearly constant values and (3) equilibrium phase, in which averages
for the integrands, pressure and internal energy are accumulated.

Contribution to the internal energy and pressure beyond the cut-off
distance (r,) are estimated in the usual way,

U =<U>yp+U,x (18)
<P>=<P>MD+PLR (19)

with the long range corrections given by

pe

U2R=2anZXaij U,yr)r? dr (20)
a B

Feaf

ES

PLR=~(2/3)anZZXaXﬁf dUy(r)/drr>dr (1)
a A

Yeap

In eqns. (20) and (21), radial distribution function beyond r, is taken to
be unity. Since the density fluctuates in isobaric simulation, the time
averaged value of p has been used in these corrections.

Although, analogous procedure can be used to evaluate V¥ and HF
in these simulations using coupling parameter method, the values of
these properties may not be sufficiently reliable using such a small
number of particles (because their terms involve fluctuation terms as
well as accumulations of fluctuations). Moreover, excess volumes are
very small in these mixtures, so a small uncertainty may cause large
relative errors in VE Therefore, excess volume and excess enthalpy
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were obtained from the following equation at the same Tand P,

V” = [/l"nixturc - XA Vburc AT XB VPU!'C B X(' Vl“‘“ﬁ(' (22)
U b= Ulcnixturc - XA U‘[;urcA - XB U;urv B XC U;UW C (23)
HE = U* + PVE (24)

where simulations are also performed for the pure fluids at the given
temperature and pressure of the mixtures.

4. VAN DER WAALS ONE-FLUID THEORY

Van der Waals one-fluid model was originally suggested by Leland
et al. [38]. This theory has been applied extensively in the past [ 39, 40].
In this theory, mixture properties are expressed in terms of the equation
of state (EOS) of pure fluids with composition dependent size and
energy parameters, given by

oy =YX, X0, (25)
x

nx:<ZZXaXﬂag_[,U§/,>/af (26)

a f

Van der Waals one-fluid theory (VDW1) requires an accurate equa-
tion of state for the pure LJ fluids. In the present calculations, we use
the recently proposed [41] analytic equation of state for the pure LJ
fluids. This equation of state (referred to as KN EOS) is based on a
perturbed virial expansion with a theoretically defined temperature
dependent hard sphere reference system. It is more accurate and
covers much wider range of temperature than the previous equations
of state [42,43]. The important expressions for evaluating ther-
modynamic properties using KN EOS are given in Appendix I. This
version of VDW1 theory has been found very successful in describing
excess properties of moderately nonideal binary mixtures [44]. In this
paper we test the van der Waals one-fluid theory against our simula-
tion results for ternary mixtures.
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5. RESULTS AND DISCUSSION

In this section, we present computer simulation (CS) results for total
and excess properties of three ternary mixtures as a function of tem-
perature and pressure. We also examine the accuracy of the van der
Waals one-fluid theory by comparing theoretical predictions with our
simulation results. Size and energy parameters of the mixtures are
contained in Table II.

5.1. Total Properties

Table 111 contains results for density and residual internal energy of
three equimolar ternary mixtures. Mixtures M1 and M2 are considered

TABLEIl Potential parameters: size parameter ratios are:a  /

; ) C4a=
Opp/Tan = 0—((‘/6‘444 -

Mixtures IJAA/L‘AA f,'mj/u‘_h1 Eoel gy
M1 1 1.200 1.40
M2 i 1.375 1.75
M3 1 1.500 2.00

TABLE Il Simulation results for density and internal energy in equi-
molar ternary mixtures

. Ty 3, 3
Mixtures  kpTje,  Pol [e po

e yres /' Ne¢

AA

Cs DW1i Ccs VDW 1

M1 15 1.0 0699 0699  —564 —564
15 . 0738 0739  —593  —593
25 15 0520 0511  —378  —38I
25 40 0703 0704  —509 =509
M2 1.5 1.0 0744 0743 —695 —692
15 ‘ 0776 0773 =721 =717
25 L5 0548 0549 476  —476
25 40 0723 072  —613  —6.1I
M3 15 10 0770 0769  —~787 —7.83
15 15 079 0794  —811  —807
20 0685 0685 —675 —672
25 1.5 0576 0576  —549  —549
25 40 0738 0735  —690 —685

AAD 0.28% - 0.33%
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at four different conditions, (k,T/e,,=1.5, Pol,/ec,a=1);
(kyT/e,,= 1.5 Pa /e, =15 (ks T/e =25, Pad, /e, =15) and
(kyT/e,,=2.5, Pe3 /e,, =4). Mixture M3 is considered at five con-
ditions, (kyT/e,,=1.5,Pa3, /¢, = 1) (kyT/c,, =15 Pad, [¢,, =
1.5V (kyT/e,=2.0,Pcl, /e, =15;(kyT/t,=25Pal,/
£, =1.5), and (k,T/e, =25, Pa3, /¢, =4). In mixture M3 energy
ratios are larger than those in mixtures M1 and M2, thus mixture M3
is more nonideal than other two mixtures. Likewise, mixture M2 ex-
hibits more nonideality than mixture M1. Unlike parameters of the
mixtures are obtained from LB CR. Errors in simulation values of
both density and internal energy are assigned to be + 1%. In the table
simulation results are compared with densities and internal energies
obtained from VDWI1 theory. For 13 state points, the absolute aver-
age deviation between simulation and VDWI1 are 0.28% in density
and 0.33% in internal energy. These comparisons show that VDW1 is
reliable in describing simulation results for total properties of these
mixtures, within simulation errors.

5.2. Excess Properties

For the above three mixtures, Tables [V--VI present simulation results
for excess Gibbs free energy, excess volume, and excess enthalpy,

TABLE IV Simulation results for excess Gibbs free energy in
equimolar ternary mixtures

Mixtures  kyT/s, ~— Pad [e GE (Jjmol)
cS VDW 1
M1 1.5 1.0 56+5 59
1.5 1.5 5245 55
25 1.5 3I9+5 42
25 4.0 40+ 5 43
M2 1.5 1.0 173 £ 10 186
1.5 1.5 164 + 10 175
2.5 1.5 137 + 10 151
25 4.0 122+ 10 142
M3 15 1.0 2854 15 308
15 15 265+ 15 292
2.0 1.5 243+ 15 286
2.5 1.5 238+ 15 264
2.5 4.0 208 + 15 240




08:11 28 January 2011

Downl oaded At:

48 K. SHUKLA

TABLE V  Simulation results for excess volume in equimolar ternary

mixtures
Mixtures keT/e, | Pl Je,, VE(ce/mol)
CS VDW

M1 1.5 1.0 —043+0.18 —0.28
1.5 1.5 —0.17+0.17 —-0.13
2.5 1.5 —0.22+0.25 0.01
2.5 4.0 —0.05 £0.18 0.01

M2 1.5 1.0 —0.84+0.17 —-0.73
1.5 1.5 —0.53+0.16 —0.38
2.5 1.5 —0.37+£023 —-0.27
2.5 4.0 —0.09+0.17 —0.004

M3 LS 1.0 L3007 104
1.5 1.5 —0.67+0.16 —0.58
20 1.5 —090+0.19 —0.83
25 1.5 —0.84+£0.22 -0.68
2.5 4.0 —0.03+0.17 —-0.04

TABLE VI Simulation results for excess enthalpy in equimolar ter-
nary mixtures

Mixtures kgTle,, P(r;A/uAA HE(J/mol)
CS VDW 1
M1 1.5 1.0 32420 60
1.5 1.5 43+ 20 62
2.5 1.5 87+ 20 89
2.5 4.0 44 + 20 61
M2 1.5 1.0 140 4 20 174
1.5 1.5 145+ 20 183
2.5 1.5 238 +20 269
2.5 4.0 163 + 20 194
M3 1.5 1.0 251 4+ 30 279
1.5 1.5 263 + 30 294
20 1.5 291 + 30 337
2.5 1.5 389 + 30 419
2.5 4.0 221+ 30 320

respectively. Table IV shows that G® decreases as pressure increases,
for a given temperature. This behavior is moderate in mixture M1, but
becomes more pronounced in mixtures M2 and M3, as the mixtures
become more nonideal. Similar behavior is seen when the temperature
increases for a given pressure, however, temperature effect is more
pronounced quantitatively than the corresponding pressure effect.
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TABLE VIl Simulation results for density, internal energy
and excess Gibbs [ree energy as a function of energy interaction
parameter in equimolar ternary mixtures at k,;T/¢ = 1.5and

3o
PU,L.{",L.« =15
. Pal, U /Ne | AG"/Ne
0.9 0.755 —6.53 0.464
0.94 0.763 —6.77 0.281
0.97 0.768 —6.99 0.140
1.00 0.775 —7.21 0
1.03 0.778 —7.39 —0.143
1.06 0.785 —7.63 —0.289
1.10 0.791 —791 —0.487

49

0.76
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FIGURE I Comparison of theorctical and simulation results for density of mixture
M2 as a function of unlike energy interaction parameter.

Table V shows that an increase in pressure is responsible for an in-
crease in excess volume in all mixtures for a given temperature. For a
given pressure, V' increases in M1 and M2, while it first decreases and
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then increases in M3. In Table VI, H® increases as pressure increases
in all the three mixtures when considered at the low temperature,
kyT/e,,=15. At the higher temperature, k,T/¢,, = 2.5, HY is seen
to decrease with increasing pressure. On the other hand, H® is always
an increasing function of temperature in all the three mixtures for a
given pressure.

Comparison of VDW1 predictions with simulation results in the
tables show that VDW1 is the most reliable for mixture M1. As the
energy parameter ratio increases, VDWI1 starts to slightly deviate
from simulation in predicting excess properties, in particular, H, of
more nonideal mixtures M2 and M3.

In order to study the variation of thermodynamic properties with
unlike energy interaction parameters, Table VII contains simulation
results for density, internal energy and excess Gibbs free energy (AG*)

-6 | T T T LA LR ] T T
: kT/SAA=1 5
6.5 Bo, °fe, =15

N\
.\

res
U /NeAA
2
{

75| o Cs

—VDW1
| i

_8,...I#L,xl..‘4{.4 L

08 09 09 1 105 1.1 1.15

C"AB

FIGURE 2 Comparison of theoretical and simulation results for residual internal
energy of mixture M2 as a function of unlike energy interaction parameter.
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of mixture M2 as a function of {,({,, =, 3, ={,;). AG" is the differ-
ence between excess Gibbs energy of the mixture following LB CR
and that of the mixture deviating from LB CR. In these mixtures,
unlike energy interaction parameters are equal, but they deviate from
Berthelot CR. Size parameters of the components are again the same.
As {,, increases (i.e., as the mixture becomes more nonideal because of
the unlike energy effects only), density increases while both internal
energy and AG" decrease. This behavior is physically expected. In
Figures 1--3, we compare VDWI1 and simulation results for density,
internal energy and AG". As the figures show, VDW1 describes these
nonideal mixtures very well.

500 ——

AGE (J/mol)
(e

i o CS

VDW1

500 by
085 09 09 1 105 1.1 1.15

San

FIGURE 3 Comparison of theoretical and simulation results for the difference bet-
ween excess Gibbs energy of mixture M2 following LB CR and that deviating from
Berthelot CR.
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6. CONCLUSIONS

In this paper, we have presented isothermal-isobaric molecular dynami-
¢s simulation results for total and excess properties of three equimolar
ternary mixtures. These are moderately nonideal mixtures differing only
in energy parameter ratios, while size parameter ratios are kept to be
the same. Temperature and pressure effects have been investigated.
Their effects are significant, in particular, on excess properties of suffi-
ciently nonideal mixtures. The unlike energy interaction parameter is
found to significantly affect the total as well as the excess Gibbs free
energy. Comparisons of van der Waals one-fluid theory predictions
with our simulation results show that VDWI performs very well in
describing total and excess properties of these mixtures. These simula-
tion results are important to test statistical theories of ternary mixtures.

LIST OF SYMBOLS

CS Computer simulation

EOS Equation of state

G Gibbs free energy

H Enthalpy

KN Kolafa and Nezbeda EOS
LJ Lennard-Jones pair potential
P Pressure

T Absolute temperature

|4 Volume

VDWI van der Waals one-fluid theory
X Composition

Greek Letters

& Energy parameter in the pair potential
o Size parameter in the pair potential
Subscript

A, B, C Species

o f Indices for species
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Superscripts
E Excess property
res Residual property

APPENDIX I Thermodynamic properties using KN EOS[41]

The residual free energy of the pure LJ fluids is given by
A™/Ne= A"/ Ne + exp( — 70*2) p*T*ABy g + . C,; T2 p*/ (L)
ij
with corresponding pressure
Po?[e=p*T* {Z“S +p* (1 =230y exp( = 7p*?) ABy

+.iC,; T*”zzlp’“} (1.2)
ij

and internal energy

HZMS 1) adyy
dygy  O(1/T)

)
JAB, 1pn

ptenpl =) S

U'/Ne=

Z(%— l)C,.jT”“V'2 p* (1.3)
ij
In the above equations, the hard sphere properties are given by
ZM = (14 n+n? =277 (1+n)/3) /(1 =) (14)
and
ANSTe ) N = T*[SIn(1 — 1)/3 + (34 — 33+ 4n*)/(6(1 = n)*)] (1.5)

with, n = np*d /6
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Functions d,,, and AB, ., are evaluated from the following poly-

nomial

f(T*)=Y C,T*”> + C, InT* and

=-T <Z%Cl T*i/2 + Cln)

In

(T

o(1/T*)

(L.7)

Values of the coeflicients appearing in the above equations are given

below.

Coeflicients of d,, and AB, ,,:

thH :f( T*)
i C,
-2 0.011117524
—1 —~0.076383859
0 1.080142248
1 0.000693129
In —0.063920968

Coeflicients of the eqns. (1.1-1.3):

C, i
201546797 —1 5

i

J
2
3
4 28.28313847 —2 2
0 5 —1042402873 —2 3 —
2 —19.58371655 —2 4
3 7562340289 —2 5 —
4 —120.70586598 —2 6

References

—28.17881636 —1 6 —27.37737354

Bz, hBH =f(T%)
i C,
—7 —0.58544978
-6 0.43102052
-5 0.87361369
—4 —4.13749995
-3 2.90616279
-2 —7.02181962
0 0.02459877
Cij i Cij
9392740328 —4 2 —13.37031968
—43 65.38059570
29.34470520 —4 4 —115.09233113
112.35356937 —4 5 88.91973082
170.64908980 —4 6 —25.62099890
123.06669187
34.42288969 Y 1.92907278
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